1) svm-train:
Usage: svm-train [options] training_set_file [model_file]
c:\libsvm\windows\svm-train -s 0 -t 0 -v 5 test
(註) -v 5 :training data 切成五份交叉做Cross Validation
[commonly used parameters]
-s svm_type : set type of SVM (default 0)
0 -- C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR
-t kernel_type : set type of kernel function (default 2)
0 -- linear: u'*v
1 -- polynomial: (gamma*u'*v + coef0)^degree
2 -- radial basis function: exp(-gamma*u-v^2)
3 -- sigmoid: tanh(gamma*u'*v + coef0)
4 -- precomputed kernel (kernel values in training_set_file)
-v n: n-fold cross validation mode
2)svm-predict:
Usage: svm-train [options] training_set_file [model_file]
3)svm-scale:
c:\libsvm\windows\svm-scale test >test.scale
(註) 將test 的所有值scaling 轉存在 test.scale
預設是將值scale在 [-1,1] 之間
沒有留言:
張貼留言